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Abstract 

A new molecular orbital localization procedure is proposed. The approach is based 
on partitioning of the overlap matrix into atomic contributions in accordance with 
Bader's topological theory of atoms in molecules. The new procedure has several advantages 
over other schemes. It preserves the o'/n-separability in planar systems and allows for 
a straightforward interpretation of the localized orbitals in terms of their localization 
indices and atomic occupancies. The new procedure is tested on the H/O, LiF, N z, CO, 
BH 3. CO and Li 2 molecules. 

1. Introduction 

A single-determinantal many-electron wave function is invariant with respect 
to any unitary transformation among its one-electron functions (spin-orbitals) [1]. 
The canonical molecular orbitals (CMOs) that diagonalize the Fock operator reflect 
the symmetry of the irreducible representations of the molecular point group and 
therefore are delocalized over the entire molecular framework. The classical Lewis-  
Linnett picture [2] of localized bonds, lone pairs, etc. can be retrieved by carrying 
out a localization transformation among CMOs [3-5]. 

From the mathematical point of view, localization of CMOs is equivalent to 
finding a unitary transformation matrix C that maximizes the localization sum 

c= Z Z 
i klmn 

The matrix C that relates LMOs to CMOs is usually computed through a series of 
2 x 2 rotations [6] or by a second-order maximization procedure [7]. Due to its 
unitary character, the localization transformation leaves the many-electron wave 
function unaltered. The tensor Tktm, , defines the localization procedure. The most 
widely used choices for Tu,,,,, are 
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ER ri-21 ll Tklmn = (klm21 [ n2), (2a) 

(the Edmis ton-Ruedenberg  (ER) localization [3]); 

Z FB = - ( k l r l l ) .  (m I r l n ) ,  klmn (2b) 

(the Fos te r -Boys  (FB) localization [4]); and 

N Tkt,~ . = (km l ln), (2c) 

(the yon Niessen (N) localization [5]). 
For a molecule with M electrons, the ER and N localization methods require =M 5 

mathematical operations, while for the FB localization the computational effort is 
proportional to M 3. In the case of  (locally) planar molecules, the LMOs obtained 
from any of  the above procedures often have a form of so-called z or banana orbitals 
rather than the cr and ~r ones [8]. One should point out that, although there are no 
definite physical reasons for preferring the cr/~r LMOs over the z ones, one obtains 
a much clearer picture of  bonding using the former LMOs. The LiF molecule can 
serve as a typical example: the FB localization yields the following LMOs: two of 
the inner-shell type, one cr lone-pair on the F atom and three equivalent LMOs of 
the z type [9]. This is in contrast to the set of  two inner-shell LMOs together with 
one s and three p lone-pair LMOs on the F atom anticipated from the classical Li+F - 
picture. Another drawback of the above localization procedures is that they do not 
provide any simple indices that could be used for judging the extent of  localization/ 
delocalization and/or calculating atomic electron populations. Usually, the character 
of  LMOs has to be examined from their plots. 

Recently, some new approaches to localization of  molecular orbitals have 
been put forward. The natural localized orbitals of  Weinhold et al. [ 10] take advantage 
of the natural population analysis [11]. The LMOs of Pipek and Mezey [12] are 
derived using Mulliken population analysis. Both of these methods rely on reference 
to atomic orbitals as prescribed by the basis set used in a particular calculation. 
Therefore, so obtained LMOs are not true molecular properties, since they cannot 
be derived from the wave function itself. This introduces a certain degree of arbitrariness 
and precludes the use for one-center basis sets, or basis sets with bond polarization 
functions or ghost atoms. 

In the present paper, we propose a new localization procedure that is free of  
these disadvantages. 

2. The atomic overlap matrices 

Let us assume that we were able to define an atomic  overlap matr ix  (AOM) 
( i  IJ)a with the following summation property: 
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~ ( i l j ) a  = ( i l j ) :  S~j. (3) 
A 

In eq. (3), the summation extends over N atoms A of the molecule under consideration. 
Definition of AOMs constitutes a partitioning of the overlap matrix. The quantity 
(i I i)a defines the atomic population of the ith orbital on the atom A (the atomic 
occupancy). The quantity [12] 

Li = ~ ( i l i )  2 , (4) 
A 

is the localization index of the ith orbital. L? 1 is equal to the effective number of 
atoms spanned by the ith orbital. If for all atoms A the eigenvalues of the respective 
AOM lie between 0 and 1, it follows from the Cauchy inequality that L71 is bounded 
by the following inequalities: 

1 <Li  -1 < N .  (5) 

Taking the above observation into account, we propose a new localization 
scheme with the tensor 

Tktm,~ = ~ (k [l)z (m [n)a . (6) 
A 

In order to have a practical localization method that uses eq. (6), one has to specify 
(i IJ)A. Several definitions are possible. In the approach by Pipek and Mezey [12], 
one uses MuHiken population analysis to determine AOMs. As explained in the 
introduction, this results in arbitrary partitioning of AOMs. Another potential possibility 
would be the use of recently introduced GAPT population analysis [13, 14]. However, 
we have found that the approach often yields negative electron populations for the 
localized orbitals. 

The quantum theory of atoms in molecules as proposed by Bader [15] provides 
an elegant way of defining AOMs. The definition uses no references to the basis 
set used in the actual calculations. Hence, the resulting AOMs are true molecular 
properties. The relevant equation reads [16] 

(ilJ)a = f Ii((r)ll~(r)dr. (7) 

over basin of A 

The atomic basins are uniquely specified by gradient paths in the electron density. 
This yields "atoms" that satisfy several quantum-mechanical theorems, the virial 
theorem being one example. For more details, the interested reader should consult 
refs. [15, 16]. In table 1, we show the AOMs for the H20 molecule. 
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Table  1 

Atomic overlap matrices for the HzO molecule (6-311G *° basis set) 

H1 

O 

H2 

0.000 

0 .0(~  0.040 

0.000 0.064 0.109 

0.000 - 0.040 - 0.065 0.044 

0.000 0.000 0.000 0.000 

1.000 

0,000 0.920 

0.000 0.000 0,781 

0.000 0.079 0,000 0.911 

0,000 0,000 0.000 0,000 

0.000 

0.000 0.040 

0.000 - 0.064 0.109 

0.000 - 0.040 0.065 0.044 

0.000 0.000 0.000 0.000 

0.006 

0.988 

0.006 

Since in planar molecules ( o" I ~r)a = 0 for all atoms A, one can block-localize 
the orbitals without affecting the localization sum L. This means that there is no 
crDz mixing and no possible formation of banana bonds. 

3. Computational details 

The CMOs were obtained using the GAUSSIAN-82 package [17]. All molecules 
had their geometries optimized within a given basis set. The Bader AOMs were 
computed using EXTREME/PROAIM system of  programs [16]. In the following 
tables, all CMOs are listed in the order of  increasing orbital energies. 

4. Results 

The localized orbitals were computed for the H20, LiF, N2, CO, BH 3. CO and 
Li 2 molecules. Values of L71 close to one indicate core or lone-pair orbitals. Those 
between one and two are characteristic for LMOs describing localized bonds and 
those larger than two correspond to delocalized bonds. In the H20 molecule, the 
CMOs are already fairly localized, as indicated by a small change in the localization 
sum L when going from CMOs to LMOs (table 2). The first LMO is a core orbital 



Table 2 

Results for the H20 molecule (6-311G** basis set) 

CMO 
i 

(a) Canonical 0rbitals (L = 4.296) 

Localization number Atomic occupancies 
L~ 1 H I O H 2 

1 
2 
3 
4 
5 

Total 

1.000 0.000 1.000 0.000 
1.177 0.040 0.920 0.040 
1.575 0.109 0.782 0.109 
1.197 0.044 0.912 0.044 
1.024 0.006 0.988 0.006 

0.199 4.602 0.199 

LMO 
i 

(b Localized orbitals (L = 4.346) 

Localization number Atomic occupancies 
L71 H I O H 2 

1 
2 
3 
4 
5 

Total 

1.000 0.000 1.000 0.000 
1.009 0.002 0.996 0.002 
1.450 0.004 0.809 0.187 
1.450 0.187 0.809 0.004 
1.024 0.006 0.988 0.006 

0.199 4.602 0.199 

Table 3 

Results for the LiF molecule (6-31+G* basis set) 

CMO 
i 

(a) Canonical orbitals (L = 5.907) 

Localization number Atomic occupancies 
L~-I Li F 

1 1.000 0.000 1.000 
2 1.022 0.989 0.011 
3 1.010 0.005 0.995 
4 1.043 0.021 0.979 
5 1.010 0.005 0.995 
6 1.010 0.005 0.995 

Total 1.025 4.975 

LMO 
i 

(b Localized orbitals (L = 5.922) 

Localization number Atomic occupancies 
L71 Li F 

1 1.000 0.000 1.000 
2 1.015 0.993 0.007 
3 1.000 0.000 1.000 
4 1.046 0.023 0.977 
5 1.010 0.005 0.995 
6 1.010 0.005 0.995 

Total 1.025 4.975 

173 
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on the oxygen atom. The second and fifth LMOs are the cr and iv lone pairs on the 
oxygen atom. Finally, the third and fourth LMOs describe two equivalent O - H  bond 
orbitals. This interpretation of  localized orbitals can be carried out entirely by 
considering their localization indices and the relevant atomic occupancies. As expected, 
the total atomic occupancies are invariant to the localization transformation. 

Results for the LiF molecules are also clear-cut (table 3). In this case, the 
localization increases the sum L only verysl ightly .  The set of  LMOs comprises F 
and Li core orbitals (i = 1 and 2, respectively) together with one s and three p lone- 
pair orbitals on the F atom (i = 3, 4, 5 and 6). This is in accordance with the ionic 
Li+F - bond. 

In the N 2 molecule,  all CMOs are completely delocalized due to the molecular 
symmetry requirements (table 4). The localization transformation yields two 
core orbitals (i = 1 and 2), one cr bonding orbital (i = 3), two lone-pair orbitals 

Table 4 

Results for the N~ molecule 

(a) Canonical orbitals 

(6-31G ° basis set) 

(L = 3.500) 

CMO Localization number Atomic occupancies 
i L~ 1 N 1 Nz 

1 2.000 0 . 5 ~  0.500 
2 2 . 0 ~  0 . 5 ~  0.500 
3 2.000 0.500 0.500 
4 2.000 0.500 0 . 5 ~  
5 2.000 0 . 5 ~  0.500 
6 2 . 0 ~  0 . 5 ~  0.500 
7 2 . 0 ~  0 . 5 ~  0.500 

Total 3 . 5 ~  3.500 

(b Localized orbitals (L = 5.481) 

LMO Localization number Atomic occupancies 
i L~ 1 N 1 N 2 

1 1.000 0.000 1.000 
2 1.000 1.000 0.000 
3 2.000 0.500 1.500 
4 1.010 0.995 0.005 
5 1.010 0.005 0.995 
6 2.010 0.500 0.500 
7 2,000 0.500 0.500 

Total 3.500 3.500 

(i = 4 and 5) and two equivalent bonding 7r orbitals (i = 6 and 7). This is accompanied 
by a significant increase in L. 
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The situation in the isoelectronic CO molecules is quite similar (table 5). 
However,  due to its heteronuclear character, the resulting LMOs are less delocalized, 
as reflected by smaller values of  the corresponding localization indices. There are 

Table 5 

Results for the CO molecule (6-31 +G" basis set) 

(a) Canonical orbitals (L = 5.948) 

CMO 
i 

Localization number Atomic occupancies 
L} -1 C O 

1 1.000 0 .000 1.00(3 
2 1.006 0.997 0.003 
3 1.152 0.071 0.929 
4 1.273 0.122 0.878 
5 1.290 0.129 0.871 
6 1.290 0.129 0.871 
7 1.335 0.853 0.147 

Total 2.301 4.699 

LMO 
i 

(b Localized orbitals (L = 6.249) 

Localization number Atomic occupancies 
L~ 1 C O 

1 1.000 0.000 1.000 
2 1.005 0.998 0.002 
3 1.228 0.104 0.896 
4 1.001 0.000 1.000 
5 1.290 0.129 0.871 
6 1.290 0.129 0.871 
7 1.124 0.941 0.059 

Total 2.301 4.699 

two core orbitals (i = 1 and 2), one ~ bonding orbital (i = 3), two equivalent iv 
bonding orbitals (i = 5 and 6) together with lone pairs on the O (i = 4) and the C 
(i = 7) atoms. The C lone pair is slightly delocalized. 

CMOs of the BH 3. CO molecular complex are highly delocalized (table 6). 
The ninth orbital is spread across five atoms (three hydrogens, the B and the C 
atoms). The localization transformation brings about a substantial increase in L. There 
are eleven LMOs: The three first ones (i = 1, 2 and 3) are core orbitals of  the O, 
C and B atoms. The fourth LMO~P; a cT bonding orbital of  the C - O  bond. There 
is an increased participation of  the C atom in bonding compared to the isolated CO 
molecule. The fifth LMO is basically a lone-pair orbital on the C atom which is 
delocalized to some extent. The sixth LMO is clearly a lone-pair orbital on the O 
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Table 6 

Results for the BH 3. CO molecule (6-31G ° basis set) 

(a) Canonical orbitals (L = 5.948) 

CMO Localization number Atomic occupancies 
i L71 B H 1 H 2 H 3 C O 

1 1.000 0.000 0 .000 0 .000 0 .000 0 .000 1.000 
2 1.006 0.000 0.000 0,000 0.000 0.997 0.003 
3 1.008 0.996 0.001 0.001 0,001 0.001 0.000 
4 1.163 0.000 0.000 0.000 0.000 0.076 0,924 
5 2.789 0.054 0,036 0.036 0.036 0.406 0.432 
6 2.885 0.068 0.057 0.057 0.057 0.235 0.527 
7 1.375 0.003 0.007 0.002 0.002 0.146 0.840 
8 1.375 0.003 0.001 0.005 0.005 0.146 0.840 
9 5.147 0.131 0.190 0.190 0.190 0.260 0.040 

10 3.233 0.128 0.031 0.380 0.380 0.048 0.034 
11 3.212 0.124 0.499 0.148 0.148 0.048 0.034 

Total 1.506 0.822 0.818 0.818 2.362 4.674 

(b) Localized orbitals (L = 8.843) 

LMO Localization number Atomic occupancies 
i L~ 1 B H 1 H 2 H 3 C O 

1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 
2 1.005 0.000 0.000 0.000 0.000 0.998 0.002 
3 1.007 0.997 0.001 0.001 0.001 0.001 0.000 
4 1.259 0,001 0.001 0.001 0.001 0.114 0.884 
5 1.376 0.066 0.016 0.016 0.016 0.849 0.038 
6 1,000 0.000 0.000 0,000 0.000 0.000 1.000 
7 1.298 0.001 0.001 0.000 0,001 0.130 0.868 
8 1.298 0.001 0.001 0.001 0.000 0.130 0,868 
9 1.673 0.146 0,023 0.022 0.757 0.048 0.004 

10 1.675 0.148 0.023 0.756 0.021 0.048 0.004 
11 1.672 0.148 0.757 0,022 0.021 0.048 0.005 

Total 1.506 0.822 0,818 0,818 2.362 4,674 

atom. The next two LMOs (i = 7 and 8) are equivalent zc orbitals of  the C - O  bond. 
Finally, the last three LMOs (i = 9, 10 and 11) are equivalent cr orbitals of  the 
B - H  bonds. 

Two points regarding the above results should be emphasized. First, there is 
no LMO that would describe the B - C  bonding. Second, there are some small differences 
in the localization indices and atomic occupancies for the equivalent LMOs. These 
are caused by a limited numerical accuracy associated with the discrete integration 
used in the Bader partitioning. 
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The interpretation of  the localized orbitals resulting from the Bader definition 
of AOMs may run into difficulties in some rare cases where there is a discrepancy 
between the number of  atomic basins and nuclei [18, 19]. The Li 2 molecule is a 
classical example of such a case [17]. To localize the orbitals of the Li 2 molecule, 
one has to modify eqs. (3), (4) and (6) by including the empty basin (denoted by 
( • ) in table 7) in the summation over atoms A. The localization yields two core 
orbitals (i = 1 and 2), and one orbital delocalized over two Li atoms and the empty 
basin (i = 3). 

Table 7 

Results for the Li z molecule (6-311G* basis set) 

CMO 
i 

(a) Canonical orbitals (L = 1.405) 

Localization number Atomic occupancies 

L~ 1 Li 1 Li2 ( • ) 

1 2.000 0.500 0.500 0.000 
2 2.000 0.500 0.500 0.000 
3 2.469 0.224 0.224 0.552 

Total 1.224 1.224 0.552 

LMO 
i 

(b) Localized orbitals (L = 2.405) 

Localization number Atomic occupancies 
L71 Li 1 Li 2 ( • ) 

1 1.000 1.000 0.000 0.000 
2 1.000 0.000 1.000 0.000 
3 2.468 0.224 0.224 0.552 

Total 1.224 1.224 0.522 

5. Discussion 

Our localization procedure has several advantages over other schemes: First, 
like the FB localization it is computationally an M 3 procedure. Second, it yields the 
localization indices and atomic occupancies for both CMOs and LMOs that provide 
useful tools for interpretation of the results. In fact, the character of  the localized 
orbitals can be inferred directly from these quantities without the need of  plotting 
LMOs. The present scheme extends the applicability of the topological theory of  
atoms in molecules. Finally, the crDr-separation is built into our approach. The 
LMOs do not break symmetry imposed by the nuclear framework of  molecules. 

In the light of  the above ~su l t s ,  one should wish that a more efficient 
numerical integration technique be incorporated into the Bader scheme, yielding a 
better accuracy of  the computed AOMs. At the present time, this accuracy is limited 
to approximately 3 digits. 
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We devote the final comment to the relation between the present approach 
and the localization procedure first proposed by Perkins and Stewart [20] and 
corrected by Paniagua et al. [21]. If one defines the atomic overlap matrix as 

(ilj)A = ~ Ck*iCkj, (8) 
k~A 

where C is the matrix of MO coefficients, one retrieves the Perkins-Stewart-Paniagua 
scheme. Our localization index becomes equivalent to the "bond centre number" [20]. 
One should remember, however, that the definition (8) is relevant only for the semi- 
empirical methods based on the ZDO approximation. 
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